# C.U.SHAH UNIVERSITY Winter Examination-2015

### Subject Name :Differential and Integral Calculus

Subject Code : 4SC04MTC1 Branch : B.Sc.(Mathematics/ Physics)

### Semester : 4 Date :19/11/2015 Time :2:30 To5:30Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

| Q-1 |    | Attempt the following questions:                                                                                                                                   | (14)         |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     | a) | If $div \vec{F} = 0$ then $\vec{F}$ is called irrotational vector function. True / False.                                                                          | (01)         |
|     | b) | Write formula of the radius of curvature for the polar curve $r = f(\theta)$ .                                                                                     | (01)         |
|     | c) | The transformation $x = r \cos \theta$ , $y = r \sin \theta$ transform the area element $dy dx$ in to $ J  dr d\theta$ where $ J $ is equal to                     | (01)         |
|     | d) | a) $r$ b) $r^2$ c) $r^2 \sin \psi$ d) None of these<br>Area of region $R$ is<br>a) $\int_R x  dy$ b) $\int_R y  dx$ c) $\iint_R dx  dy$ d) $\iiint_R dx  dy  dz$   | (01)         |
|     | e) | State Green's theorem.                                                                                                                                             | (02)         |
|     | f) | If $\vec{F} = 3t^2i + 4t j + 4t^3k$ , find value of $\int_{t=1}^{t=2} \overrightarrow{F(t)} dt$ .                                                                  | (02)         |
|     | g) | Evaluate: $\int_0^2 \int_0^2 (x^2 + y^2) dx dy$ .                                                                                                                  | (02)         |
|     | h) | Verify $u = \log(x^2 + y^2)$ is a solution of partial differential equation<br>$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$        | (02)         |
|     | i) | Evaluate: $\int_0^1 \int_0^x e^x dx dy$ .                                                                                                                          | (02)         |
| Q-2 | a) | Attempt any four questions from Q-2 to Q-8<br>Attempt all questions<br>Find the direction derivative of $\phi(x, y, z) = xy^2 + yz^3$ at the point $(2, -1, 1)$ in | (14)<br>(05) |

a) Find the direction derivative of  $\emptyset(x, y, z) = xy^2 + yz^3$  at the point (2, -1, 1) in (05) the direction of the vector i + 2j + 2k.

Page 1 || 3



b) In usual notation prove that  $div(\bar{f} \times \bar{g}) = \bar{g} curl \bar{f} - \bar{f} curl \bar{g}$ . (05)

c) If 
$$\overline{f} = (ax + 3y + 4z)i + (x - 2y + 3z)j + (3x + 2y - z)k$$
 is (04) solenoidal then find *a*.

Q-3 Attempt all questions

a) Change the order of integration in the integral and then evaluate (05)  
$$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx.$$

(14)

(14)

(14)

(14)

(14)

b) Evaluate  $\iint_R xy \, dy \, dx$  where *R* is the positive quadrant of the circle (05)  $x^2 + y^2 = a^2$ .

c) Evaluate: 
$$\int_0^1 \int_0^x \int_0^{\sqrt{x+y}} z \, dx \, dy \, dz.$$
 (04)

- a) Applying the transformations u = x + y, y = uv and (05) evaluate  $\int_0^1 \int_0^{1-x} e^{\frac{y}{(x+y)}} dy dx$ .
- b) Using multiple integral, prove that volume of sphere having radius a is  $\frac{4}{3}\pi a^3$ . (05)
- c) Find  $\operatorname{curl} \vec{F}$ , where  $\vec{F} = \operatorname{grad}(x^3 + y^3 + z^3 3xyz)$ . (04)

Q-5

#### Attempt all questions

a) Evaluate  $\int_c \vec{F} d\vec{r}$  where  $\vec{F} = x^2 i + xyj$  and c is the boundary of the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a and y = a. (05)

b) Find 
$$\int_{C} \frac{dx}{x+y}$$
, where  $C: x = at^2, y = 2at, 0 \le t \le 2.$  (05)

c) Evaluate 
$$\int_{(1,1)}^{(2,3)} x \, dy$$
 over the line segment joining the points (2,3) to (1,1). (04)

Q-6

- Attempt all questions
- a) If  $\varphi = 2xyz^2$ ,  $\vec{F} = xyi zj + x^2k$  and c is the curve (06)  $x = t^2, y = 2t, z = t^3$  from t = 0 to t = 1, evaluate the line integrals (a)  $\int_c \varphi \, d\vec{r}$  (b)  $\int_c \vec{F} \times d\vec{r}$ .
- b) Solve:  $p \tan x + q \tan y = \tan z$ . (04)
- c) Find multiple points of the curve  $x^4 2ay^3 3a^2y^2 2a^2x^2 + a^4 = 0.$  (04)

Q-7 Attempt all questions

Page 2 || 3



- a) Verify Green's theorem for the function  $\overrightarrow{F} = (x + y)i + 2xy j$  and c is the (07) rectangle in the XY plane bounded by x = 0, y = 0, x = a, y = b.
- b) Form the partial differential equation by eliminating the arbitrary constants or (07) function.
  - (i) z = (x + a)(y + b)(ii)  $f(x + y + z, x^2 + y^2 + z^2) = 0$

## Q-8 Attempt all questions

(14) (07)

- a)
- Prove that radius of curvature for the curve y = f(x) is  $\frac{(1+y_1^2)^2}{y_2}$ .
- b) Verify Stock's theorem for  $\vec{F} = x^2 i xy j$  where *c* is a rectangle in plane z = 0 (07) and bounded by the lines x = 0, y = 0, x = a, y = a.

Page 3 || 3

